Deep Reinforcement Learning

David Silver, Google DeepMind

Reinforcement Learning: Al = RL

RL is a general-purpose framework for artificial intelligence
» RL is for an agent with the capacity to act
» Each action influences the agent's future state
» Success is measured by a scalar reward signal
RL in a nutshell:
» Select actions to maximise future reward
We seek a single agent which can solve any human-level task

» The essence of an intelligent agent

Agent and Environment

acti

a

ion

t

> At each step t the agent:
» Receives state s;
> Receives scalar reward r;
» Executes action a;
» The environment:
» Receives action a;
» Emits state s;
» Emits scalar reward r;

Examples of RL

» Control physical systems: walk, fly, drive, swim, ...

> Interact with users: retain customers, personalise channel,
optimise user experience, ...

» Solve logistical problems: scheduling, bandwidth allocation,
elevator control, cognitive radio, power optimisation, ..

» Play games: chess, checkers, Go, Atari games, ...

» Learn sequential algorithms: attention, memory, conditional
computation, activations, ...

Policies and Value Functions

» Policy 7 is a behaviour function selecting actions given states
a=mn(s)

» Value function Q7 (s, a) is expected total reward
from state s and action a under policy 7

Q7(s,a) =E [”t+1 + Y2+ Vrep3 + o | s, 3]

“How good is action a in state s?”

Approaches To Reinforcement Learning

Policy-based RL

» Search directly for the optimal policy 7*

» This is the policy achieving maximum future reward
Value-based RL

» Estimate the optimal value function Q*(s, a)

» This is the maximum value achievable under any policy
Model-based RL

» Build a transition model of the environment

» Plan (e.g. by lookahead) using model

Deep Reinforcement Learning

» Can we apply deep learning to RL?

v

Use deep network to represent value function / policy / model

v

Optimise value function / policy /model end-to-end

v

Using stochastic gradient descent

Bellman Equation

» Value function can be unrolled recursively

Q"(s,a) =E [ft+1 +Yre + s+ | 's, 3]
— By [r +1Q7(s, &) | 5,4]

» Optimal value function Q*(s, a) can be unrolled recursively

Q*(s,a) = Eg [r + max Q*(s', ') | s, a]
a/

> Value iteration algorithms solve the Bellman equation

Quia(s:2) = Ex |+ max O(s.) | 5]
a

Deep Q-Learning

» Represent value function by deep Q-network with weights w

Q(s,a,w) ~ Q" (s, a)

» Define objective function by mean-squared error in Q-values

2
Lw)=E || r+vymaxQ(s',a',w) — Q(s,a,w)
target
» Leading to the following Q-learning gradient
0L(w) ;o 0Q(s,a,w)
D =E [<r+7 max Q(s',a,w) — Q(s,a,w) B

» Optimise objective end-to-end by SGD, using %

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
» Successive samples are correlated, non-iid
2. Policy changes rapidly with slight changes to Q-values

» Policy may oscillate
» Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown

» Naive Q-learning gradients can be large
unstable when backpropagated

Deep Q-Networks

DQN provides a stable solution to deep value-based RL

1. Use experience replay

» Break correlations in data, bring us back to iid setting
» Learn from all past policies

2. Freeze target Q-network

» Avoid oscillations
» Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
» Robust gradients

Stable Deep RL (1): Experience Replay

To remove correlations, build data-set from agent’s own experience
» Take action a; according to e-greedy policy
» Store transition (s¢, a, re4+1, St+1) in replay memory D
» Sample random mini-batch of transitions (s, a, r,s’) from D

» Optimise MSE between Q-network and Q-learning targets, e.g.

‘C(W) = IEs,a.,r.s’ND

2
(r 5 max Qs &, w) — Q(s. 2, w>)]

Stable Deep RL (2): Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target

» Compute Q-learning targets w.r.t. old, fixed parameters w™
r+~ max Q(s’,a,w")
a/

» Optimise MSE between Q-network and Q-learning targets

E(W) = IEs,a,r,s/wD

2
(I’ +7 m:71x Q(sl> alv W_) - Q(S, a, W))]

> Periodically update fixed parameters w™ < w

Stable Deep RL (3): Reward/Value Range

v

DQN clips the rewards to [—1,+1]
This prevents Q-values from becoming too large

v

v

Ensures gradients are well-conditioned

v

Can't tell difference between small and large rewards

Reinforcement Learning in Atari

action

<

DQN in Atari

v

End-to-end learning of values Q(s, a) from pixels s

v

Input state s is stack of raw pixels from last 4 frames

v

Output is Q(s, a) for 18 joystick/button positions

v

Reward is change in score for that step

32 4x4 filters Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4x84x84

[T o

Stack of 4 previous] Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all games
[Mnih et al.]

DQN Results in Atari

%0001

%000€
L L)Ll

%009 %005

%00
1

%00€
1

ol

0

0Z

Jeuiee Jesur 3seg

[9AS-UBLLINY MOjOq

a£3 sjerud
sepneID
angqisasy
spioisisy
uewoed ‘S
Buimog

Fung sianoa
Jsenbeag
ainuap

uaiy

Jepiuy

pleY Jany
1S19H yueg
spadiuan
puewwo) saddoyg
4O/ 4O PIRZIN
auoz ameg
xusisy

an0qe 10 [aAs]-uBINY JB

‘OY3IH
uea.0

Aevpoy o)
umoq pue dn
Aguaq Buiysid
oinpug

10lid awi
Remazaiy
Js)sely ng-Buny)
weyyueng
Jepiy weag
siapenu) soeds
Buod

puog sawer
siuua|
oosebuey
Jauunmy peoy
Inessy

iy

aweo siyL aweN
SHOERY Uowsq
Jaydon
Jequio Azei
SHUERY
s\uEjoqoY
Jeuung Jelg
noyeaig
Buixog

Ilequid OSpIA

2abuansy sewWnzojuop

DQN Demo

How much does DQN help?

DQN
Q-learning | Q-learning | Q-learning | Q-learning
+ Replay + Replay
+ Target Q + Target Q
Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089

Normalized DQN

v

Normalized DQN uses true (unclipped) reward signal

v

Network outputs a scalar value in “stable” range,

U(s,a,w) € [-1,+1]

v

Output is scaled and translated into Q-values,

Q(s,a,w,o,m) =0cU(s,a,w)+7

v

m, o are adapted to ensure U(s,a, w) € [—1,+1]

v

Network parameters w are adjusted to keep Q-values constant

O'1U(S,a, W1) +m = O'QU(S, a, W2) + 7o

Demo: Normalized DQN in PacMan

Gorila (GOogle Relnforcement Learning Architecture)

Syncever
global N steps

Parameter Server Learner

DQN Loss
Shard K Shar P, ;
wrt loss - max,Q(s;a’; 6)

Gradient Target Q

e Network

Bundled

Actor
argmax, Q(s,a; 8)
Environment nommsmsmN Q Network

» Parallel acting: generate new interactions

» Distributed replay memory: save interactions

» Parallel learning: compute gradients from replayed interactions
» Distributed neural network: update network from gradients

Stable Deep RL (4): Parallel Updates

Vanilla DQN is unstable when applied in parallel. We use:
> Reject stale gradients
> Reject outlier gradients g > u + ko
» AdaGrad optimisation

Gorila Results

Using 100 parallel actors and learners
» Gorila significantly outperformed Vanilla DQN
» on 41 out of 49 Atari games
» Gorila achieved x2 score of Vanilla DQN
> on 22 out of 49 Atari games
» Gorila matched Vanilla DQN results 10x faster
» on 38 out of 49 Atari games

Gorila DQN Results in Atari: Time To Beat DQN

50 o

40

30

GAMES

20+

——
BEATING

——
HIGHEST

TIME (Days)

Deterministic Policy Gradient for Continuous Actions

» Represent deterministic policy by deep network a = 7 (s, u)
with weights u

» Define objective function as total discounted reward
Jw)=E[n+yn+ v2r +]
» Optimise objective end-to-end by SGD

oJ(u) . 0Q7 (s, a) On(s, u)
ou ° Oa ou

» Update policy in the direction that most improves Q
> i.e. Backpropagate critic through actor

Deterministic Actor-Critic

Use two networks: an actor and a critic
» Critic estimates value of current policy by Q-learning

0Q(s, a, w)}

oLW) _ o K, +9Q(s', 7 (s'), w) — Q(s, , W)> ow

ow

» Actor updates policy in direction that improves @

0J(u) 0Q(s,a,w) Or(s, u)
Jou £ [Oa ou]

Deterministic Deep Actor-Critic

> Naive actor-critic oscillates or diverges with neural nets

» DDAC provides a stable solution

1. Use experience replay for both actor and critic
2. Use target Q-network to avoid oscillations

oL 902,
aE/VW) = Es,a,r,s’N’D |:<f + ’YQ(Sla 77(5/)7 Wi) - Q(S’ a W)> Q(SWQW)]
)y [080sam oy
ou = Ls.a,r,s'~D Ha ou

DDAC for Continuous Control

End-to-end learning of control policy from raw pixels s
Input state s is stack of raw pixels from last 4 frames
Two separate convnets are used for @ and 7

Physics are simulated in MuJoCo

vV v vyy

Stack of 4 previous
frames.

Stack of 4 previous Fully-connected layer
frames of rectified linear units

[Lillicrap et al.]

DDAC Demo

Model-Based RL

Learn a transition model of the environment

p(r,s' |s,a)

Plan using the transition model

> e.g. Lookahead using transition model to find optimal actions

Deep Models

v

Represent transition model p(r,s’ | s,a) by deep network

v

Define objective function measuring goodness of model
» e.g. number of bits to reconstruct next state (Gregor et al.)
Optimise objective by SGD

v

DARN Demo

Challenges of Model-Based RL

Compounding errors
» Errors in the transition model compound over the trajectory
» By the end of a long trajectory, rewards can be totally wrong
» Model-based RL has failed (so far) in Atari

Deep networks of value/policy can “plan” implicitly
» Each layer of network performs arbitrary computational step
» n-layer network can “lookahead” n steps

> Are transition models required at all?

Deep Learning in Go

Monte-Carlo search
Monte-Carlo search (MCTS) simulates future trajectories

>

» Builds large lookahead search tree with millions of positions
» State-of-the-art 19 x 19 Go programs use MCTS

» e.g. First strong Go program MoGo

(Gelly et al.)

Convolutional Networks
» 12-layer convnet trained to predict expert moves
» Raw convnet (looking at 1 position, no search at all)
» Equals performance of MoGo with 10° position search tree
(Maddison et al.)

Program Accuracy Program Winning rate
Human 6-dan ~ 52% GnuGo 97%
12-Layer ConvNet 55% MoGo (100k) 46%
8-Layer ConvNet* 44% Pachi (10k) 47%
Prior state-of-the-art | 31-39% Pachi (100k) 11%

*Clarke & Storkey

Conclusion

v

RL provides a general-purpose framework for Al

v

RL problems can be solved by end-to-end deep learning

v

A single agent can now solve many challenging tasks

v

Reinforcement learning + deep learning = Al

Questions?

“The only stupid question is the one you never ask” -Rich Sutton

