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Reinforcement Learning: Al = RL

RL is a general-purpose framework for artificial intelligence
» RL is for an agent with the capacity to act
» Each action influences the agent's future state
» Success is measured by a scalar reward signal
RL in a nutshell:
» Select actions to maximise future reward
We seek a single agent which can solve any human-level task

» The essence of an intelligent agent



Agent and Environment
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> At each step t the agent:
» Receives state s;
> Receives scalar reward r;
» Executes action a;
» The environment:
» Receives action a;
» Emits state s;
» Emits scalar reward r;



Examples of RL

» Control physical systems: walk, fly, drive, swim, ...

> Interact with users: retain customers, personalise channel,
optimise user experience, ...

» Solve logistical problems: scheduling, bandwidth allocation,
elevator control, cognitive radio, power optimisation, ..

» Play games: chess, checkers, Go, Atari games, ...

» Learn sequential algorithms: attention, memory, conditional
computation, activations, ...



Policies and Value Functions

» Policy 7 is a behaviour function selecting actions given states
a=mn(s)

» Value function Q7 (s, a) is expected total reward
from state s and action a under policy 7

Q7(s,a) =E [”t+1 + Y2+ Vrep3 + o | s, 3]

“How good is action a in state s?”



Approaches To Reinforcement Learning

Policy-based RL

» Search directly for the optimal policy 7*

» This is the policy achieving maximum future reward
Value-based RL

» Estimate the optimal value function Q*(s, a)

» This is the maximum value achievable under any policy
Model-based RL

» Build a transition model of the environment

» Plan (e.g. by lookahead) using model



Deep Reinforcement Learning

» Can we apply deep learning to RL?

v

Use deep network to represent value function / policy / model

v

Optimise value function / policy /model end-to-end

v

Using stochastic gradient descent



Bellman Equation

» Value function can be unrolled recursively

Q"(s,a) =E [ft+1 +Yre + s+ | 's, 3]
— By [r +1Q7(s, &) | 5,4]

» Optimal value function Q*(s, a) can be unrolled recursively

Q*(s,a) = Eg [r + max Q*(s', ') | s, a]
a/

> Value iteration algorithms solve the Bellman equation

Quia(s:2) = Ex |+ max O(s.) | 5]
a



Deep Q-Learning

» Represent value function by deep Q-network with weights w

Q(s,a,w) ~ Q" (s, a)

» Define objective function by mean-squared error in Q-values

2
Lw)=E || r+vymaxQ(s',a',w) — Q(s,a,w)
target
» Leading to the following Q-learning gradient
0L(w) ;o 0Q(s,a,w)
D =E [<r+7 max Q(s',a,w) — Q(s,a,w) B

» Optimise objective end-to-end by SGD, using %



Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
» Successive samples are correlated, non-iid
2. Policy changes rapidly with slight changes to Q-values

» Policy may oscillate
» Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown

» Naive Q-learning gradients can be large
unstable when backpropagated



Deep Q-Networks

DQN provides a stable solution to deep value-based RL

1. Use experience replay

» Break correlations in data, bring us back to iid setting
» Learn from all past policies

2. Freeze target Q-network

» Avoid oscillations
» Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
» Robust gradients



Stable Deep RL (1): Experience Replay

To remove correlations, build data-set from agent’s own experience
» Take action a; according to e-greedy policy
» Store transition (s¢, a, re4+1, St+1) in replay memory D
» Sample random mini-batch of transitions (s, a, r,s’) from D

» Optimise MSE between Q-network and Q-learning targets, e.g.

‘C(W) = IEs,a.,r.s’ND

2
(r 5 max Qs &, w) — Q(s. 2, w>) ]



Stable Deep RL (2): Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target

» Compute Q-learning targets w.r.t. old, fixed parameters w™
r+~ max Q(s’,a,w")
a/

» Optimise MSE between Q-network and Q-learning targets

E(W) = IEs,a,r,s/wD

2
(I’ +7 m:71x Q(sl> alv W_) - Q(S, a, W)) ]

> Periodically update fixed parameters w™ < w



Stable Deep RL (3): Reward/Value Range

v

DQN clips the rewards to [—1,+1]
This prevents Q-values from becoming too large

v

v

Ensures gradients are well-conditioned

v

Can't tell difference between small and large rewards



Reinforcement Learning in Atari
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DQN in Atari

v

End-to-end learning of values Q(s, a) from pixels s

v

Input state s is stack of raw pixels from last 4 frames

v

Output is Q(s, a) for 18 joystick/button positions

v

Reward is change in score for that step

32 4x4 filters Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4x84x84

[T o

Stack of 4 previous ] Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all games
[Mnih et al.]



DQN Results in Atari
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DQN Demo



How much does DQN help?

DQN
Q-learning | Q-learning | Q-learning | Q-learning
+ Replay + Replay
+ Target Q + Target Q
Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089




Normalized DQN

v

Normalized DQN uses true (unclipped) reward signal

v

Network outputs a scalar value in “stable” range,

U(s,a,w) € [-1,+1]

v

Output is scaled and translated into Q-values,

Q(s,a,w,o,m) =0cU(s,a,w)+7

v

m, o are adapted to ensure U(s,a, w) € [—1,+1]

v

Network parameters w are adjusted to keep Q-values constant

O'1U(S,a, W1) +m = O'QU(S, a, W2) + 7o



Demo: Normalized DQN in PacMan



Gorila (GOogle Relnforcement Learning Architecture)
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» Parallel acting: generate new interactions

» Distributed replay memory: save interactions

» Parallel learning: compute gradients from replayed interactions
» Distributed neural network: update network from gradients



Stable Deep RL (4): Parallel Updates

Vanilla DQN is unstable when applied in parallel. We use:
> Reject stale gradients
> Reject outlier gradients g > u + ko
» AdaGrad optimisation



Gorila Results

Using 100 parallel actors and learners
» Gorila significantly outperformed Vanilla DQN
» on 41 out of 49 Atari games
» Gorila achieved x2 score of Vanilla DQN
> on 22 out of 49 Atari games
» Gorila matched Vanilla DQN results 10x faster
» on 38 out of 49 Atari games



Gorila DQN Results in Atari: Time To Beat DQN
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Deterministic Policy Gradient for Continuous Actions

» Represent deterministic policy by deep network a = 7 (s, u)
with weights u

» Define objective function as total discounted reward
Jw)=E[n+yn+ v2r + ]
» Optimise objective end-to-end by SGD

oJ(u) . 0Q7 (s, a) On(s, u)
ou  ° Oa ou

» Update policy in the direction that most improves Q
> i.e. Backpropagate critic through actor



Deterministic Actor-Critic

Use two networks: an actor and a critic
» Critic estimates value of current policy by Q-learning

0Q(s, a, w)}

oLW) _ o K, +9Q(s', 7 (s'), w) — Q(s, , W)> ow

ow

» Actor updates policy in direction that improves @

0J(u) 0Q(s,a,w) Or(s, u)
Jou £ [ Oa ou ]




Deterministic Deep Actor-Critic

> Naive actor-critic oscillates or diverges with neural nets

» DDAC provides a stable solution

1. Use experience replay for both actor and critic
2. Use target Q-network to avoid oscillations

oL 902,
aE/VW) = Es,a,r,s’N’D |:<f + ’YQ(Sla 77(5/)7 Wi) - Q(S’ a W)> Q(SWQW)]
)y [080sam oy
ou = Ls.a,r,s'~D Ha ou



DDAC for Continuous Control

End-to-end learning of control policy from raw pixels s
Input state s is stack of raw pixels from last 4 frames
Two separate convnets are used for @ and 7

Physics are simulated in MuJoCo

vV v vyy

Stack of 4 previous
frames.

Stack of 4 previous Fully-connected layer
frames of rectified linear units

[Lillicrap et al.]



DDAC Demo



Model-Based RL

Learn a transition model of the environment

p(r,s' |s,a)

Plan using the transition model

> e.g. Lookahead using transition model to find optimal actions




Deep Models

v

Represent transition model p(r,s’ | s,a) by deep network

v

Define objective function measuring goodness of model
» e.g. number of bits to reconstruct next state (Gregor et al.)
Optimise objective by SGD

v



DARN Demo



Challenges of Model-Based RL

Compounding errors
» Errors in the transition model compound over the trajectory
» By the end of a long trajectory, rewards can be totally wrong
» Model-based RL has failed (so far) in Atari

Deep networks of value/policy can “plan” implicitly
» Each layer of network performs arbitrary computational step
» n-layer network can “lookahead” n steps

> Are transition models required at all?



Deep Learning in Go

Monte-Carlo search
Monte-Carlo search (MCTS) simulates future trajectories

>

» Builds large lookahead search tree with millions of positions
» State-of-the-art 19 x 19 Go programs use MCTS

» e.g. First strong Go program MoGo

(Gelly et al.)

Convolutional Networks
» 12-layer convnet trained to predict expert moves
» Raw convnet (looking at 1 position, no search at all)
» Equals performance of MoGo with 10° position search tree
(Maddison et al.)

Program Accuracy Program Winning rate
Human 6-dan ~ 52% GnuGo 97%
12-Layer ConvNet 55% MoGo (100k) 46%
8-Layer ConvNet* 44% Pachi (10k) 47%
Prior state-of-the-art | 31-39% Pachi (100k) 11%

*Clarke & Storkey



Conclusion

v

RL provides a general-purpose framework for Al

v

RL problems can be solved by end-to-end deep learning

v

A single agent can now solve many challenging tasks

v

Reinforcement learning + deep learning = Al



Questions?

“The only stupid question is the one you never ask” -Rich Sutton



