
Deep Reinforcement Learning

David Silver, Google DeepMind



Reinforcement Learning: AI = RL

RL is a general-purpose framework for artificial intelligence

I RL is for an agent with the capacity to act

I Each action influences the agent’s future state

I Success is measured by a scalar reward signal

RL in a nutshell:

I Select actions to maximise future reward

We seek a single agent which can solve any human-level task

I The essence of an intelligent agent



Agent and Environment

state

reward

action

at

rt

st
I At each step t the agent:

I Receives state st
I Receives scalar reward rt
I Executes action at

I The environment:
I Receives action at
I Emits state st
I Emits scalar reward rt



Examples of RL

I Control physical systems: walk, fly, drive, swim, ...

I Interact with users: retain customers, personalise channel,
optimise user experience, ...

I Solve logistical problems: scheduling, bandwidth allocation,
elevator control, cognitive radio, power optimisation, ..

I Play games: chess, checkers, Go, Atari games, ...

I Learn sequential algorithms: attention, memory, conditional
computation, activations, ...



Policies and Value Functions

I Policy π is a behaviour function selecting actions given states

a = π(s)

I Value function Qπ(s, a) is expected total reward
from state s and action a under policy π

Qπ(s, a) = E
[
rt+1 + γrt+2 + γ2rt+3 + ... | s, a

]
“How good is action a in state s?”



Approaches To Reinforcement Learning

Policy-based RL

I Search directly for the optimal policy π∗

I This is the policy achieving maximum future reward

Value-based RL

I Estimate the optimal value function Q∗(s, a)

I This is the maximum value achievable under any policy

Model-based RL

I Build a transition model of the environment

I Plan (e.g. by lookahead) using model



Deep Reinforcement Learning

I Can we apply deep learning to RL?

I Use deep network to represent value function / policy / model

I Optimise value function / policy /model end-to-end

I Using stochastic gradient descent



Bellman Equation

I Value function can be unrolled recursively

Qπ(s, a) = E
[
rt+1 + γrt+2 + γ2rt+3 + ... | s, a

]
= Es′

[
r + γQπ(s ′, a′) | s, a

]
I Optimal value function Q∗(s, a) can be unrolled recursively

Q∗(s, a) = Es′

[
r + γ max

a′
Q∗(s ′, a′) | s, a

]

I Value iteration algorithms solve the Bellman equation

Qi+1(s, a) = Es′

[
r + γ max

a′
Qi (s

′, a′) | s, a
]



Deep Q-Learning

I Represent value function by deep Q-network with weights w

Q(s, a,w) ≈ Qπ(s, a)

I Define objective function by mean-squared error in Q-values

L(w) = E


r + γ max

a′
Q(s ′, a′,w)︸ ︷︷ ︸

target

− Q(s, a,w)


2

I Leading to the following Q-learning gradient

∂L(w)

∂w
= E

[(
r + γ max

a′
Q(s ′, a′,w)− Q(s, a,w)

)
∂Q(s, a,w)

∂w

]
I Optimise objective end-to-end by SGD, using ∂L(w)

∂w



Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
I Successive samples are correlated, non-iid

2. Policy changes rapidly with slight changes to Q-values
I Policy may oscillate
I Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown
I Naive Q-learning gradients can be large

unstable when backpropagated



Deep Q-Networks

DQN provides a stable solution to deep value-based RL

1. Use experience replay
I Break correlations in data, bring us back to iid setting
I Learn from all past policies

2. Freeze target Q-network
I Avoid oscillations
I Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
I Robust gradients



Stable Deep RL (1): Experience Replay

To remove correlations, build data-set from agent’s own experience

I Take action at according to ε-greedy policy

I Store transition (st , at , rt+1, st+1) in replay memory D
I Sample random mini-batch of transitions (s, a, r , s ′) from D
I Optimise MSE between Q-network and Q-learning targets, e.g.

L(w) = Es,a,r ,s′∼D

[(
r + γ max

a′
Q(s ′, a′,w)− Q(s, a,w)

)2
]



Stable Deep RL (2): Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target

I Compute Q-learning targets w.r.t. old, fixed parameters w−

r + γ max
a′

Q(s ′, a′,w−)

I Optimise MSE between Q-network and Q-learning targets

L(w) = Es,a,r ,s′∼D

[(
r + γ max

a′
Q(s ′, a′,w−)− Q(s, a,w)

)2
]

I Periodically update fixed parameters w− ← w



Stable Deep RL (3): Reward/Value Range

I DQN clips the rewards to [−1,+1]

I This prevents Q-values from becoming too large

I Ensures gradients are well-conditioned

I Can’t tell difference between small and large rewards



Reinforcement Learning in Atari

state

reward

action

at

rt

st



DQN in Atari

I End-to-end learning of values Q(s, a) from pixels s

I Input state s is stack of raw pixels from last 4 frames

I Output is Q(s, a) for 18 joystick/button positions

I Reward is change in score for that step

Network architecture and hyperparameters fixed across all games
[Mnih et al.]



DQN Results in Atari



DQN Demo



How much does DQN help?

DQN

Q-learning Q-learning Q-learning Q-learning
+ Replay + Replay

+ Target Q + Target Q

Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089



Normalized DQN

I Normalized DQN uses true (unclipped) reward signal

I Network outputs a scalar value in “stable” range,

U(s, a,w) ∈ [−1,+1]

I Output is scaled and translated into Q-values,

Q(s, a,w , σ, π) = σU(s, a,w) + π

I π, σ are adapted to ensure U(s, a,w) ∈ [−1,+1]

I Network parameters w are adjusted to keep Q-values constant

σ1U(s, a,w1) + π1 = σ2U(s, a,w2) + π2



Demo: Normalized DQN in PacMan



Gorila (GOogle ReInforcement Learning Architecture)

DQN Loss

Target Q
Network

Learner

Q(s,a; θ)Gradient
wrt loss r

Q Network

maxa’ Q(s’,a’; θ–)

Shard K-1 Shard K+1Shard K

Parameter Server

Gradient

SyncSync

(s,a)

Sync every
global N steps

s’

Store
(s,a,r,s’)

Bundled
Mode

Replay
MemoryQ Network

Actor

Environment
argmaxa Q(s,a; θ)

s

I Parallel acting: generate new interactions

I Distributed replay memory: save interactions

I Parallel learning: compute gradients from replayed interactions

I Distributed neural network: update network from gradients



Stable Deep RL (4): Parallel Updates

Vanilla DQN is unstable when applied in parallel. We use:

I Reject stale gradients

I Reject outlier gradients g > µ+ kσ

I AdaGrad optimisation



Gorila Results

Using 100 parallel actors and learners
I Gorila significantly outperformed Vanilla DQN

I on 41 out of 49 Atari games

I Gorila achieved x2 score of Vanilla DQN
I on 22 out of 49 Atari games

I Gorila matched Vanilla DQN results 10x faster
I on 38 out of 49 Atari games



Gorila DQN Results in Atari: Time To Beat DQN

0 1 2 3 4 5 6
0

10

20

30

40

50

HIGHEST

BEATING

TIME (Days)

G
A

M
ES



Deterministic Policy Gradient for Continuous Actions

I Represent deterministic policy by deep network a = π(s, u)
with weights u

I Define objective function as total discounted reward

J(u) = E
[
r1 + γr2 + γ2r3 + ...

]
I Optimise objective end-to-end by SGD

∂J(u)

∂u
= Es

[
∂Qπ(s, a)

∂a

∂π(s, u)

∂u

]
I Update policy in the direction that most improves Q
I i.e. Backpropagate critic through actor



Deterministic Actor-Critic

Use two networks: an actor and a critic

I Critic estimates value of current policy by Q-learning

∂L(w)

∂w
= E

[(
r + γQ(s ′, π(s ′),w)− Q(s, a,w)

)
∂Q(s, a,w)

∂w

]
I Actor updates policy in direction that improves Q

∂J(u)

∂u
= Es

[
∂Q(s, a,w)

∂a

∂π(s, u)

∂u

]



Deterministic Deep Actor-Critic

I Naive actor-critic oscillates or diverges with neural nets

I DDAC provides a stable solution

1. Use experience replay for both actor and critic

2. Use target Q-network to avoid oscillations

∂L(w)

∂w
= Es,a,r ,s′∼D

[(
r + γQ(s ′, π(s ′),w−)− Q(s, a,w)

)
∂Q(s, a,w)

∂w

]
∂J(u)

∂u
= Es,a,r ,s′∼D

[
∂Q(s, a,w)

∂a

∂π(s, u)

∂u

]



DDAC for Continuous Control
I End-to-end learning of control policy from raw pixels s
I Input state s is stack of raw pixels from last 4 frames
I Two separate convnets are used for Q and π
I Physics are simulated in MuJoCo

Q(s,a)

π(s)

a

[Lillicrap et al.]



DDAC Demo



Model-Based RL
Learn a transition model of the environment

p(r , s ′ | s, a)

Plan using the transition model

I e.g. Lookahead using transition model to find optimal actions

rightleft

right rightleft left



Deep Models

I Represent transition model p(r , s ′ | s, a) by deep network

I Define objective function measuring goodness of model

I e.g. number of bits to reconstruct next state (Gregor et al.)

I Optimise objective by SGD



DARN Demo



Challenges of Model-Based RL

Compounding errors

I Errors in the transition model compound over the trajectory

I By the end of a long trajectory, rewards can be totally wrong

I Model-based RL has failed (so far) in Atari

Deep networks of value/policy can “plan” implicitly

I Each layer of network performs arbitrary computational step

I n-layer network can “lookahead” n steps

I Are transition models required at all?



Deep Learning in Go
Monte-Carlo search

I Monte-Carlo search (MCTS) simulates future trajectories
I Builds large lookahead search tree with millions of positions
I State-of-the-art 19× 19 Go programs use MCTS
I e.g. First strong Go program MoGo

(Gelly et al.)

Convolutional Networks
I 12-layer convnet trained to predict expert moves
I Raw convnet (looking at 1 position, no search at all)
I Equals performance of MoGo with 105 position search tree

(Maddison et al.)

Program Accuracy
Human 6-dan ∼ 52%
12-Layer ConvNet 55%
8-Layer ConvNet* 44%
Prior state-of-the-art 31-39%

*Clarke & Storkey

Program Winning rate
GnuGo 97%
MoGo (100k) 46%
Pachi (10k) 47%
Pachi (100k) 11%



Conclusion

I RL provides a general-purpose framework for AI

I RL problems can be solved by end-to-end deep learning

I A single agent can now solve many challenging tasks

I Reinforcement learning + deep learning = AI



Questions?

“The only stupid question is the one you never ask” -Rich Sutton


